
                                            Additional Revision Questions 4            

1. A fund is started at $1000 and compound interest is reckoned at 4% per annum (at the end of each  

    year). If withdrawals of $50 are made at the beginning of each of the subsequent years, show that  

    the amount in the fund at the beginning of the thn )1( +  year is   
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2. Find the following sums, giving your answers in terms of :n  
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3. Show that 
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   A  is an integer and )(nf is a function in .n  

    

4(i) By considering the identity ,3sinsin3sin4 3 AAA −≡  show that 
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   (ii) Hence, find the infinite sum of  
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5. The points A and B are equidistant from the origin O  and have position vectors a  and b (referred 

    to O ) such that the acute angle AOB is 
4

π
 radians. The point N on AB exists such that  

   2:1: =NBAB  and the point M is the foot of perpendicular of N on .OB  



(i) Show that the position vector of the point M is ( )12
3
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+ b . 

(ii) If it is further known that b is a unit vector, find the exact area of triangle .OMN  
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  (b) By considering integration by parts, find  ( )dxee xx 313 tan −−∫ . 

 

7. The diagram below shows a curve C  which is defined parametrically by 

    1cos4 2 −= θx ,    ( ) θθ tan1cos4 2 −=y ,  where  
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    −x axis at the origin and at the point with coordinates ,3( 0). 
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(i) Show that .
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      What can be said about the tangent to the curve C at ?0=θ  

(ii) Find the value of θ at the origin. 

The region enclosed by C is denoted by .R  

(iii) Find the exact area of .R   

      answer correct to 3 significant figures. 

 

8. By using mathematical induction, prove that  

(iv) Find the volume of revolution when R is revolved π radians about the −x axis. Give your  
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    for all 
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9.Find ( )[ ].cot 2x
dx
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 By considering this result or otherwise, evaluate ( )∫ 23 cos xecx .dx  

 

10 (i) Find the value of A such that ,
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          constant. 

    (ii) The region bounded by the curve
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y , the −x axis, the −y axis and the line 2ln=x  

          is rotated π2 radians about the −x axis to form a solid. By considering the result obtained  

          in (i), find the exact volume of this solid. 

 


